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The image-guided CyberKnife radiosurgery system is capable of tracking spinal 
targets without fiducial implants. Recently, a new version of this fiducial-free image 
guidance modality (“enhanced Xsight spine tracking”) has been introduced. We 
assessed the accuracy of this novel technique versus its precursor in a comparative 
phantom study. The CyberKnife consists of a 6 MV linac on a six-axis robot and 
a stereoscopic kV image guidance system. An anthropomorphic head-and-neck 
phantom with a cervical spine section was mounted on the linac nozzle. The robotic 
manipulator was used to precisely move the phantom to defined positions in the 
CyberKnife workspace. Multiple stereoscopic images were acquired at different 
translational and rotational positions. The enhanced Xsight spine tracking readouts 
were recorded and compared to the nominal phantom position. These tests were 
repeated with the original Xsight spine tracking version to analyze potential differ-
ences. Enhanced Xsight spine tracking correctly reported translational offsets with 
an RMS error of less than 0.4 mm. Yaw and roll rotations were detected with an 
accuracy of 0.2°, 0.25°. Pitch offsets were slightly underestimated, with up to 0.3° 
for an offset of ± 2°. Nominal X (left-right) translational offsets were partially mis-
interpreted as roll (0.2° at a 10 mm offset). Apart from this, no correlation between 
rotational and translational directions was found. In comparison, the original Xsight 
spine tracking showed identical results for translations, but larger systematic and 
statistical errors for rotations. Enhanced Xsight spine tracking measurably improves 
precision in fiducial-free spinal radiosurgery with the CyberKnife. 
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I.	 Introduction

Spinal radiosurgery requires precise delivery of large radiation doses to lesions close to the 
spinal cord. Current delivery systems use image guidance techniques such as kV or MV on-board 
imaging (OBI), cone beam computed tomography (CT) or stereoscopic imaging to locate the 
target for patient setup and during treatment.(1) Spinal image guidance relies either on radio-
opaque marker implants(2,3) or the bony structure of the spine as a noninvasive alternative.(4,5,6) 
Digitally reconstructed radiographs (DRRs) calculated from the planning CT or a volumetric 
dataset are used as the reference for patient position and orientation. 

From a basic, metrological perspective, all “image guidance” techniques correspond to 
a measurement of the target position, with the imaging system as the measuring device. As 
such, the measured target position is subject to a measuring error, consisting of a statistical 
and, possibly, a systematic component. Sources of error include technical aspects (alignment 
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and calibration of the imaging devices, resolutions limits), robustness of the image matching 
algorithm, or user variation for systems dependent on manual input. The overall precision of 
an image-guided device can only be rated if the characteristics of the image guidance system 
have been adequately assessed. 

The CyberKnife (CK) is a frameless radiosurgery system with a compact 6 MV linac 
mounted on a robotic arm, which is guided by a stereoscopic imaging system. The patient is 
positioned on a motorized treatment couch between two amorphous silicon detector panels and 
ceiling-mounted diagnostic X-ray sources. In a typical treatment, more than 100 noncoplanar 
beams are delivered to the lesion by moving the linac head over a large solid angle around 
the patient. Since 2005, the CyberKnife is capable of targeting spine lesions by tracking the 
skeletal structure of adjacent vertebrae. The accuracy of this tracking method has been exten-
sively investigated.(7,8)

At the end of 2009, a major revision of this CK spine tracking feature (“enhanced Xsight 
spine tracking”) was introduced by the manufacturer (Accuray Inc., Sunnyvale, CA, USA). We 
quantified measuring errors and analyzed the characteristics of this new modality in compara-
tive phantom tests.

 
II.	 Materials and Methods

A.	 “Standard” Xsight spine tracking
The original Xsight spine tracking (XST) has already been described in detail.(9) Briefly, the 
XST system compares stereoscopic kV live images of the patient’s spine with a pair of DRRs. 
The DRRs are precalculated from the planning CT dataset in a ray-casting process with data 
sampling of 2 mm along the kV X-ray beam. The spinal segment adjacent to the lesion – typi-
cally including approximately three to four adjacent vertebrae – is matched in the reference 
DRRs and live images (Fig. 1) using a grid-based, automatic, nonrigid formalism.(9) In this way, 
the displacement of the target is computed in three translational and three rotational degrees of 
freedom. This position data is acquired periodically during treatment, and is used to direct the 
beam to the current position of the target.

Fig. 1.  Xsight spine tracking. A cervical spine DRR (left) for one projection is shown together with the corresponding 
X-ray live image (right) of the head-and-neck phantom. The black rectangle in the DRR denotes the predefined tracking 
region of interest, which includes only skeletal information of the spine. The matching grid(9) in the X-ray live image 
denotes the corresponding region matched by the XST algorithm.
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B.	 Enhanced Xsight spine tracking
Enhanced XST has been modified in several key ways. First, the DRR pair has been replaced 
by a library of DRRs. The ray-casting process for DRR calculation uses a reduced sampling 
step size of 0.5 mm, improving the quality of the reference images. The library consists of 
17 DRRs for each stereoscopic imaging plane. Each DRR pair represents a specific patient 
roll angle (± 5°, ± 4°, ± 3°, ± 2.5°, ± 2°, ± 1.5°, ± 1°, ± 0.5°, 0°). Furthermore, automatic, 
histogram-based preprocessing of live images has been implemented to improve live-image 
characteristics. The patient roll angle is determined by classification of these live images within 
the DRR library and interpolation, using a matching region of interest similar to the standard 
version. Translational and pitch/yaw offsets are computed similar to the standard XST, using 
the matched DRR pair. 

C. 	 Phantom tracking tests
We analyzed the performance of the enhanced XST in tracking tests with the cervical spine of a 
head-and-neck phantom. A CT dataset (1 mm slice thickness, no gap) was acquired to generate 
phantom treatment plans. DRRs with standard ray-casting (2 mm step size, standard XST) and 
a library of improved DRRs (0.5 mm step size, enhanced XST) were calculated. The phantom 
was firmly mounted on the linac nozzle. The robot (repeatability: ± 0.12 mm) was used as a 
tool to precisely move the phantom (Fig. 2). Four fiducials implanted into the phantom were 
used as defined position markers for initial alignment of the phantom. Using the known fidu-
cial locations, the spine region of interest was positioned at the origin of the imaging frame of 
reference and aligned to its coordinate axes. Offset positions were approached by moving the 
robot. Translational test positions were ± 10, ± 6, ± 2 and 0 mm from the reference position. 
The ranges of rotational offsets were [-5°;+5°] with 0.5° steps for yaw, [-2° ;+2°] with 0.25° 
steps for pitch and [-2°;+2°] with 0.15° steps for roll. The cervical spine section of the phan-
tom was used as tracking target. The tracking region of interest was limited to the vertebral 
part of the phantom only, with no parts of the skull included (Fig. 1). Image registration was 
performed automatically by the tracking system with no manual adjustment by the user. The 
system readings for at least 10 pairs of X-ray images were recorded in six degrees of freedom 
at each position. In order to assess a potential performance improvement, we compared the 
enhanced XST version with the standard XST.
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III.	Res ults 

A. 	T ranslations
The enhanced XST correctly reported translational offsets in all three directions. Over the whole 
range (-10 to +10 mm), the mean values deviated from the nominal offset by 0.2 mm or less 
(Fig. 3), which amounts to an RMS error of less than 0.4 mm. Enhanced XST readings are very 

Fig. 2.  Phantom tracking test setup. The socket of the anthropomorphic head-and-neck phantom is rigidly attached to the 
linac nozzle. Position and orientation presets of the phantom spine are reached by moving the robotic manipulator.
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reproducible, with a standard deviation σ of less than 0.05 mm for all data points. Considering 
a robot repeatability of 0.12 mm, the detected deviations are very close or below the limits of 
our measurement configuration for all data points, indicating a negligible systematic error for 
translations. This behavior is identical to the standard XST.

B.	R otations
The accuracy of rotational offset detection by enhanced XST depended on the specific direction. 
The mean yaw values deviated from the nominal offset by 0.1° or less (Fig. 4) for the complete 
range of values from -5° to +5°. Standard deviations were smaller than 0.1°. For pitch, offsets 
were underestimated by up to 15% (or ± 0.15° for a ± 1° offset, Fig. 5), with standard deviations 
of around 0.05°. Comparison with the standard XST results showed that the characteristics of 
the mean values were identical within the limits of our measurement technique. The standard 
deviations for both pitch and yaw were smaller for the enhanced XST, although not by a sig-
nificant amount (p = 0.34 and 0.35, Student’s t-test).

Roll angle results differed greatly between standard and enhanced XST (Fig. 6). On average, 
the standard version underestimated roll offsets by 25% (e.g., by 0.5° at ± 2°), with a large 
statistical uncertainty of measured values (σ = ± 0.2°). For enhanced XST, the roll estimate 
is significantly (p = 2.2 × 10-4, Wilcoxon signed-rank test) closer to the nominal value, with 
errors lower than 0.25° over the ± 2° range. Enhanced XST measurements yielded no systematic 
over-/underestimation of roll offsets. In addition, the statistical range of the values reported was 
reduced by more than half (σ < ± 0.1°, p = 2.9 × 10-14, Student’s t-test). 

Fig. 3.  Translational offset detection. Offsets reported by the standard and enhanced spine tracking system (y-axis) are 
shown vs. the nominal phantom position (x-axis) for all three directions – anterior/posterior (A/P), left/right (L/R) and 
superior/inferior (S/I). Results are means of 10 measurements. Standard deviations (σ ≤ 0.1 mm) are omitted for better 
readability.
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Fig. 4.  Yaw detection. Yaw offsets reported by standard and enhanced spine tracking (y-axis) are shown vs. the nominal 
phantom yaw orientation (y-axis). Results are means of 10 measurements ± standard deviation.

Fig. 5.  Pitch detection. Pitch offsets reported by standard and enhanced spine tracking (y-axis) are shown vs. the nominal 
phantom pitch orientation (y-axis). Results are means of 10 measurements ± standard deviation.
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C. 	 Cross-relation errors
For both XST versions, detection of anterior/posterior and superior/inferior offsets was found 
to be independent of the phantom pitch and yaw position, and vice versa (data not shown). 
There was evidence for a partial, systematic misinterpretation of nominal X (left-right) offsets 
as roll (Fig. 7), which was significantly less pronounced (p = 2.2 × 10-3, Wilcoxon signed- 
rank test) for the enhanced XST (0.2° at a 10 mm offset) compared to the standard version 
(0.5° at 10 mm).

Fig. 6.  Roll detection. Roll offsets reported by standard and enhanced spine tracking (y-axis) are shown vs. the nominal 
phantom roll orientation (y-axis). Results are means of more than 10 measurements ± standard deviation.
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IV.	D ISCUSSION

The detection of spine rotations was significantly improved for the enhanced XST. Especially 
for the roll estimate, where the standard XST was subject to a larger statistical and systematic 
error than pitch and yaw combined, an improvement both in terms of absolute values and 
statistical range was demonstrated. Rotational errors can be of clinical relevance for specific 
cases with steep dose gradients to adjacent organs at risk,(10) which are typical for CK spinal 
treatments. As a consequence, the application of enhanced XST can be expected to induce a 
clinical benefit in some cases.

We would like to point out that our investigation was limited to measurements with a rigid, 
nondeformable spine phantom. As a consequence, spine deformation may possibly add an 
additional error component to the accuracy in patient treatments. However, given the fact 
that the XST region of interest typically includes only three adjacent vertebrae, the amount of 
deformation encountered is small, thus limiting the impact on tracking accuracy. Furthermore, 
preliminary patient tracking data (not given here) shows that the amount of roll fluctuation 
during treatment is greatly reduced in comparison to the standard XST, which directly reflects 
the results from the phantom tracking tests. This indicates that even a rigid phantom is a fairly 
suitable model for a meaningful analysis of XST tracking characteristics.

In current clinical practice, very different image-guided systems are utilized for stereotactic 
spinal treatments, ranging from dedicated radiosurgery devices(5,6) to conventional gantry-based 
linacs(11) or tomotherapy.(12) For the enhanced XST modality of the CyberKnife, we have mea-
sured a maximum RMS error of 0.4 mm for translational offsets. This compares favorably to 
the 1.3 mm recently reported for the stereoscopic ExacTrac 6d system,(5) to 1–2 mm for tomo-
therapy MVCT(13) and to the 0.8 mm for cone beam CT(5) in comparable spine phantom tests. 

Fig. 7.  Detected roll offsets as a function of left/right displacements. For a nominal phantom orientation of 0° roll, the roll 
offsets reported by standard and enhanced spine tracking are given depending on the translational position of the phantom. 
Results are means of 10 measurements ± standard deviation.
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Differences in image guidance precision are significant and will be reflected in delivery. As a 
consequence, comparative treatment planning studies must include accuracy considerations in 
order to provide meaningful results.

However, we want to stress that the overall accuracy of a system must not be appraised 
based on image guidance characteristics only. Even for systems with similar, stereoscopic kV 
image guidance systems such as CyberKnife and Novalis TX, different interfaces with the 
corresponding delivery device add system-specific errors. In an analysis of overall system ac-
curacy, the radiation isocenter of a Novalis TX was reported to deviate from the imaging center 
by 0.3 mm(14) whereas, for the CyberKnife, the so-called “machine center” (the equivalence to 
the gantry “isocenter”) coincides with the imaging center for conceptual reasons.(15) Therefore, 
it is essential to consider all potential error sources when comparing system accuracy.

 
V.	 Conclusions

Enhanced Xsight spine tracking further improves CyberKnife image guidance for spinal targets. 
Submillimeter translational accuracy and a more robust and accurate detection of the spine 
orientation raises the level of precision achievable in fiducial-free radiosurgery. 
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